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Abstract. This paper is a contribution to the “neo-stability” type of result
for abstract elementary classes. Under certain set theoretic assumptions, we
propose a definition and a characterization of NIP in AECs. The class of AECs
with NIP properly contains the class of stable AECs1. We show that for an AEC
K and λ ≥ LS(K), Kλ is NIP if and only if there is a notion of nonforking on it
which we call a w*-good frame. On the other hand, the negation of NIP leads
to being able to encode subsets.
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1. Introduction

There is a massive body of literature on “neostability” for first order theories
dedicated to exploration and study of forking-like relations for various classes of
unstable theories. The main classes: NIP theories, simple theories, theories with
the strict order property, theories with the tree property of type 1 and 2, were
all presented by Shelah in [She78]. In mid 1976 Shelah set the program which he
named classification theory for non-elementary classes. A few years later
the focus shifted to abstract elementary classes (AECs).
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1See Examples 2.20 and 2.21 for AECs that are unstable, not elementary but NIP.
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An appropriate generalization of stability for AECs was introduced in [She99]
building on many previous papers including [She71b] and [GS]. In the last forty
years starting with [GS86] much was discovered about analogues of superstability.
See [Vas16b], [GV17], and [Leu23] for some recent work.

In this paper we propose progress towards “neostability of AECs”, more precisely,
exploring an analogue of NIP and its negation. We propose a definition (under
a certain cardinal arithmetic axiom) of NIP. Using techniques from papers by
Shelah [She09a], Jarden and Shelah [JS13] and Mazari-Armida [MA20], we obtain
a characterization of NIP in AECs using frames (a forking-like relation).

The notion of the λ-stable AEC was first studied in [She99] using non-splitting.
Various frameworks of forking-like relations were introduced. In [She09a], Shelah
introduced the local notion of the good λ-frame, an axiomatization of forking-like
relations for structures of cardinality λ in AECs, as a parallel of superstability.
In [BG17] Boney and Grossberg established that for “nice” AECs, stablity implies
existence of strong independence relations on the subclass of saturated models,
which allows types of arbitrary length. In [BGKV16] it was shown that this relation
and several others are unique/canonical (if they exist).

Although good λ-frames are nice and powerful, sometimes they might not exist.
There are several weaker notions, where some of the axioms of a good λ-frame are
weakened or dropped. Vasey worked with good− λ-frames in [Vas16b] and good−S

λ-frames in [Vas16a]. Jarden and Shelah defined semi-good λ-frames in [JS13].
Mazari-Armida introduced w-good λ-frames in [MA20], which is weaker than all
the axiomatic frames mentioned above.

Definition 1.1. Let K be an AEC, λ ≥ LS(K). Kλ has NIP if for all M ∈ Kλ,
|gS(M)| ≤ ded λ.

Our definition of NIP will be discussed further in the next section.

Our main results are:

Theorem 1.2 (2λ
+
> 2λ). Let K be an AEC categorical in λ ≥ LS(K) , and

1 ≤ I(λ+, K) < 2λ
+
. Kλ has NIP if and only if there is a w*-good λ-frame on K

except possibly without (Continuity). Moreover,

(1) (ded λ = λ+ < 2λ) If sλ−unq is λ-compact, then the w*-good frame satisfies
in addition that if p ∈ Sbs(M), then there is N ≥K M and q ∈ Sbs(N)
extending p that does not fork over N . In particular, for any N ′ ≥K N
there is q′ ∈ gS(N ′) extending q that does not fork over N .

(2) if K is (< λ+, λ)-local, then sλ−unq has (Continuity).

Theorem 1.3. Suppose K is (< ℵ0)-tame, M ∈ K, C ⊆ |M |, λ := |C| ≥
ℶ3(LS(K)) and (ded λ)2

LS(K)
= ded λ. Suppose |gS1(C;M)| > ded λ. Then there

is N ∈ K, ⟨ān ∈m |N | | n < ω⟩ and ϕ in the language of Galois Morleyization such
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that for every w ⊆ ω there is bw ∈ |N | such that for all i < ω,

N |= ϕ(āi, bw) ⇐⇒ i ∈ w

Theorem 1.4. If K can encode subsets of µ := ℶ(2LS(K))+ , then it can encode
subsets of any cardinal. That is, if there are M ∈ K, {ai | i < µ} ⊆ |M |,
{bw | w ⊆ µ} ⊆ |M | such that for all w ⊆ µ,

i ∈ w ⇐⇒ ϕ(ai, bw),

then we can replace µ above by any cardinal.

This paper was written while working on a Ph.D. thesis under the direction of
Rami Grossberg at Carnegie Mellon University, and I would like to thank Pro-
fessor Grossberg for his guidance and assistance in my research in general and
in this work specifically. I would also like to thank John Baldwin, Will Boney,
Artem Chernikov, James Cummings, Samson Leung, Marcos Mazari-Armida, Pe-
dro Marun and Andrés Villaveces for their help, comments and suggestions.

It is interesting to comment that Shelah already implicitly discussed similar results
in [She01] dealing with Grossberg’s question “Does I(λ,K) = I(λ++, K) = 1 imply
Kλ++ ̸= ∅” and in its followup [She09a], Chapter II of [She09c], and [She09b],
Chapter VI of [She09d]. More specifically, in [She09d, VI.2.3] and [She09d, VI.2.5]
Shelah considered the number of branches of a tree as a bound of Galois types
over a model.

2. Preliminaries

Notation 2.1.

(1) For any structure M in some language, we denote its universe by |M |, and
its cardinality by ∥M∥.

(2) For cardinals λ and µ, [λ, µ) := {κ ∈ Card | λ ≤ κ < µ}. [λ,∞) := {κ ∈
Card | λ ≤ κ}.

(3) K[λ,µ) := {M ∈ K | ∥M∥ ∈ [λ, µ)}. Kλ := K[λ,λ+)

Definition 2.2. For K an AEC, we say:

(1) K has the amalgamation property (AP) if for all M0 ≤ Mℓ for ℓ = 1, 2,
there is N ∈ K and K-embeddings fℓ : Mℓ → N for ℓ = 1, 2 such that
f1 ↾M0= f2 ↾M0 .

(2) K has the joint embedding property (JEP) if for all M0, M1 ∈ K there are
N ∈ K and K-embeddings fℓ : Ml → N for ℓ = 0, 1.

(3) K has no maximal models (NMM) if for all M ∈ K there is N >K M .

Remark 2.3. For a property P , e.g. amalgamation, we say that Kλ has P or that
K has λ-P if we restrict to Kλ in the above definition.
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Definition 2.4.

(1) K3
λ := {(a,M,N) | M,N ∈ Kλ,M <K N, a ∈ |N | − |M |}.

(2) For (a0,M0, N0), (a1,M1, N1) ∈ K3
λ, we say (a0,M0, N0) ≤ (a1,M1, N1) if

M0 ≤ M1, a0 = a1 and N0 ≤K N1.
(3) For (a0,M0, N0), (a1,M1, N1) ∈ K3

λ and K-embedding h : N0 → N1,
(a0,M0, N0) ≤h (a1,M1, N1) if h ↾M0 : M0 → M1 is a K-embedding and
h(a0) = a1.

Definition 2.5.

(1) For (a0,M0, N0), (a1,M1, N1) ∈ K3
λ, (a0,M0, N0)Eat(a1,M1, N1) if M0 =

M1, and there are N ∈ K, f0 : N0 → N , and f1 : N1 → N K-embeddings
such that f0(a0) = f1(a1) and f0 ↾M0= f1 ↾M0 .

(2) E is the transitive closure of Eat.
(3) For (a,M,N) ∈ K3

λ, the Galois type of a over M in N is gtp(a/M,N) :=
[(a,M,N)]E.

(4) For M ∈ Kλ, gS(M) := {gtp(a/M,N) | (a,M,N) ∈ K3
λ}.

ForM0 ≤K M ∈ Kλ and p = gtp(a/M,N) ∈ gS(M), define p ↾M0 := gtp(a/M0, N).

For M0 ≤K M1 and types p ∈ gS(M0) and q ∈ gS(M1), we say p ≤ q if p = q ↾M0 .

Remark 2.6. If Kλ has AP then Eat = E.

Definition 2.7. Assume that Kλ has AP. For M , N ∈ K, p ∈ gS(M) and K-
embedding h : M → N , we define h(p) := gtp(h′(a)/h[M ], N), where h′ : M ′ →
N ′ extends h and (a,M,M ′) ∈ p. Note that h(p) does not depend on the choice
of (a,M,M ′) or h′. See [Leu23, 3.1] for a proof.

Definition 2.8. Let ⟨Mi | i < δ⟩ be increasing continuous. A sequence of types
⟨pi ∈ gS(Mi) | i < δ⟩ is coherent if there are (ai, Ni) for i < δ and fj,i : Nj → Ni

for j < i < δ such that:

(1) fk,i = fj,i ◦ fk,j for all k < j < i.
(2) gtp(ai/Mi, Ni) = pi.
(3) fj,i ↾Mj

= idMj
.

(4) fj,i(aj) = ai.

The notion of coherent sequence of types first appeared in [GV06, 2.12], Here we
use the version in [MA20, 3.14] that avoids the use of a monster model.

Fact 2.9. [Bal09, 12.3] Let δ be a limit ordinal and ⟨Mi ∈ K | i ≤ δ⟩ increasing
continuous, and ⟨pi ∈ gS(Mi) | i < δ⟩ a coherent sequence of types. Then there is
p ∈ gS(Mδ) an upper bound of ⟨pi ∈ gS(Mi) | i < δ⟩, where the order is the one
from Definition 2.5(5).
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Fact 2.10. [Bal09, 11.3(2)] Let δ be a limit ordinal, ⟨Mi ∈ K | i ≤ δ⟩ increasing
continuous, and ⟨pi ∈ gS(Mi) | i < δ⟩ a sequence of types with upper bound
p ∈ gS(Mδ). Then there are ⟨Ni | i ≤ δ⟩ and ⟨fj,i | j < i⟩ that witness ⟨pi ∈
gS(Mi) | i ≤ δ⟩ being a coherent sequence.

Definition 2.11. [She01, 0.22(2)] Let µ > λ. N ∈ Kµ is saturated in µ above λ
if for all M ≤K N , λ ≤ ∥M∥ < µ, N realizes gS(M).

Definition 2.12. [She01, 0.26(1)] Let µ > λ. N ∈ Kµ is homogeneous in µ
for λ if for all M1 ≤K N , M1 ≤K M2 ∈ Kλ, λ ≤ ∥M1∥ ≤ ∥M2∥ < µ, there is
K-embedding f : M2 → N above M1.

Fact 2.13. [She01, 0.26(1)] Let µ > λ. If Kλ has AP then M ∈ Kµ is saturated
over µ for λ if and only if M is homogeneous over µ for λ.

Definition 2.14. [She71a] For a cardinal λ,

ded λ := sup{κ | ∃ a regular µ and a tree T with ≤ λ nodes and κ branches of

length µ, |T | = κ}.

Fact 2.15. [She78, II.4.11] Let T be a complete first order theory and ϕ a formula
in its language. λ is an infinite cardinal such that 2λ > ded λ. The following are
equivalent:

(1) ϕ has the independence property.
(2) |Sϕ(A)| > ded |A| for some infinite set A, |A| = λ.
(3) |Sϕ(A)| = 2|A| for some infinite set A, |A| = λ.

Fact 2.16. [She78, II.4.12] Let T be a complete theory in countable language,
and fT (λ) := sup{|S(M)| | M |= T , ∥M∥ = λ}. Then fT (λ) is exactly one of: λ,
λ+ 2ℵ0 , λℵ0 , ded λ, (ded λ)ℵ0 or 2λ. See also [Kei76].

It is reasonable to propose the following definition:

Definition 2.17. Let K be an AEC, λ ≥ LS(K). Kλ has NIP if for all M ∈ Kλ,
|gS(M)| ≤ ded λ.

At present it is unclear that we have discovered the “correct” notion. In fact, it
is plausible that there are several different notions that are equivalent when K is
an elementary class, but distinct for some non-elementary K. One weakness of
our definition is that unlike the corresponding first order notion, it is probably not
absolute.

Grossberg raised the following question:

Question 2.18. Is there an equivalent notion which does not rely on extra set
theoretic assumptions. (at least for AECs K with LS(K) = ℵ0 which are also
PCℵ0)?
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Fact 2.19. [JS13, 2.5.8] Assume K has JEP, AP and NMM. Suppose there is
Sbs ⊆ gS family of types on K satisfying only (Density), (Invariance), and for all
M ∈ Kλ, |Sbs(M)| ≤ λ+. See Definitions 3.1 and 3.3.

(1) If ⟨Mα ∈ Kλ | α < λ+⟩ is increasing and continuous, and there is a sta-
tionary set S ⊆ λ+ such that for every α ∈ S and every model N , with
Mα ≤K N , there is a type p ∈ Sbs(Mα) which is realized in Mλ+ and in N ,
then Mλ+ is saturated in λ+ above λ.

(2) For all M ∈ Kλ, |gS(M)| ≤ λ+.

The following is an example of an AEC satisfying NIP that is not elementary or
stable.

Example 2.20. [JS13, 2.2.4] Let λ be a cardinal. Let P be a family of λ+ subsets
of λ. Let τ := {Rα : α < λ} where each Rα is an unary predicate. Let K be the
class of models M for τ such that for each a ∈ |M |, {α ∈ λ | M |= Rα(a)} ∈ P .
Note that K is not elementary. Let ≤K be the substructure relation on K. The
trivial λ-frame on Kλ satisfies the axioms of a semi-good λ-frame [JS13, 2.1.3], so
in particular by Fact 2.19 Kλ satisfies NIP. On the other hand, it is unstable.

The next is an algebraic example of an AEC that satisfies NIP and is not elemen-
tary or stable.

Example 2.21. (ded λ = (ded λ)ℵ0) Let K be the class of real closed fields, and
F ≤K L if and only if F ⪯ L and L/F is a normal extension, so (K,≤K) is not
elementary. Since (K,⪯) is NIP but unstable, the number of Lω,ω syntactic types
over M ∈ Kλ, which are orbits of AutM(C), coincide with Galois types gS(M).
The number of types is bounded by ded λ = (ded λ)ℵ0 but strictly more than λ.

Definition 2.22. [She09d, VI.1.12(1)] We say S∗ is a ≤Kλ
-type-kind when:

(1) S∗ is a function with domain Kλ.
(2) S∗(M) ⊆ gS(M) for all M ∈ Kλ.
(3) S∗(M) commutes with isomorphisms.

Definition 2.23. [She09d, VI.2.9]

(1) For M ∈ K and Γ ⊆ gS(M), Γ is inevitable if for all N >K M there is
a ∈ |N | − |M | with gtp(a/M,N) ∈ Γ.

(2) For M ∈ K and Γ ⊆ gS(M), Γ is S∗-inevitable if for all N >K M , if there
is p ∈ S∗(M) realized in N then there is q ∈ Γ realized in N .

Definition 2.24. [She09d, VI.1.12(2)] For ≤Kλ
-type-kinds S1 and S2, say S1 is

hereditarily in S2 when: for M ≤K N and p ∈ S2(N) we have p ↾M∈ S1(M) =⇒
p ∈ S1(N).
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Definition 2.25. LetM ∈ Kλ. p ∈ gS(M) is < µ-minimal if for allM ≤ N ∈ Kλ,
|{q ∈ gS(N) : q ↾M= p}| < µ.

S<µ−minimal(M) := {p ∈ gS(M) | p is < µ-minimal}.
Remark 2.26. S<µ−minimal and Sλ−al (defined in Lemma 3.13) are hereditarily in
gS.

The following principle known as the weak diamond was introduced by Devlin and
Shelah [DS78].

Definition 2.27. Let S ⊆ λ+ be a stationary set. Φ2
λ+(S) holds if and only if for

all F : (2λ)<λ+ → 2 there exists g : λ+ → 2 such that for all f : λ+ → 2λ the set
{α ∈ S : F (f ↾α) = g(α)} is stationary.

Fact 2.28. [DS78]

(1) 2λ < 2λ
+
if and only if Φ2

λ+(λ+) holds.
(2) Φ2

λ+(S) holds for a stationary set S ⊆ λ+ if and only if ∀F : (2 × 2 ×
λ+)<λ+ → 2 ∃g : λ+ → 2 such that ∀η ∈ 2λ

+∀ν ∈ 2λ
+∀h : λ+ → λ+ the set

{α ∈ S : F (η ↾α, ν ↾α, h ↾α) = g(α)} is stationary.
(3) If Φ2

λ+(λ+) holds then there exists {Si ⊆ λ+ : i < λ+} pairwise disjoint
stationary sets such that Φ2

λ+(Si) for each i < λ+.

Fact 2.29. [She09d, VI.2.18] (2λ < 2λ
+
) Assume K has amalgamation and no

maximal model in λ. If

(1) S∗ is ≤Kλ
-type-kind and hereditary,

(2) S∗ ⊆ gS<λ+−min, and
(3) There is M ∈ Kλ such that:

(a) |gS∗(M)| ≥ λ+, and
(b) if M ≤K N ∈ Kλ, no subset of S∗(N) of size ≤ λ is S∗-inevitable,

then I(λ+, K) = 2λ
+
.

Fact 2.30. [She09d, VI.2.11(2)]2 For every M ∈ Kλ we have |S∗(M)| ≤ λ when:

(1) K has AP in λ.
(2) S∗ is a hereditary ≤Kλ

-type-kind in gS.
(3) For every M ∈ Kλ there is an S∗-inevitable ΓM ⊆ gS(M) of cardinality

≤ λ.

3. The w*-good frame

In this section we define w*-good frames, and show that Kλ has NIP if and only
if K has a w*-good λ-grame under additional assumptions.

2A complete argument of this result does not appear in [She09d].
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Definition 3.1. [She09c, III.0] Let λ < µ, where λ is a cardinal, and µ is a
cardinal or ∞. A pre-[λ, µ)-frame is a triple s = (K,⌣ ,Sbs) such that:

(1) K is an AEC with λ ≥ LS(K) and Kλ ̸= ∅.
(2) Sbs ⊆

⋃
M∈K[λ,µ)

gS(M). Let Sbs(M) := gS(M)∩ Sbs. Types in this family

are called basic types.
(3) ⌣ is a relation on quadruples (M0,M1, a,N), where M0 ≤K M1 ≤ N , a ∈

|N | and M0,M1, N ∈ K[λ,µ). We write a
N

|⌣
M0

M1, or we say gtp(a/M1, N)

does not fork over M0 when the relation ⌣ holds for (M0,M1, a,N).

(4) (Invariance) If f : N ∼= N ′ and a
N

|⌣
M0

M1, then f(a)
N ′

|⌣
f [M0]

f [M1]. If

gtp(a/M1, N) ∈ Sbs(M1), then gtp(f(a)/f [M1], N
′) ∈ Sbs(f [M1]).

(5) (Monotonicity) If a
N

|⌣
M0

M1 and M0 ≤K M ′
0 ≤K M ′

1 ≤K M1 ≤K N ′ ≤K

N ≤K N ′′ with N ′′ ∈ K[λ,µ) and a ∈ |N ′|, then a
N ′

|⌣
M ′

0

M ′
1 and a

N ′′

|⌣
M ′

0

M ′
1.

(6) (Non-forking Types are Basic) If a
N

|⌣
M

M then gtp(a/M,N) ∈ Sbs(M).

Definition 3.2. [MA20, 3.6] A pre-[λ, µ)-frame s = (K,⌣,Sbs) is a w-good frame
if:

(1) K[λ,µ) has AP, JEP and NMM.
(2) (Weak Density) For all M <K N ∈ Kλ, there is a ∈ |N | − |M | and M ′ ≤

N ′ ∈ K[lambda,µ) such that (a,M,N) ≤ (a,M ′, N ′) and gtp(a/M ′, N ′) ∈
Sbs(M ′).

(3) (Existence of Non-Forking Extension) If p ∈ Sbs(M) and M ≤K N , then
there is q ∈ Sbs(N) extending p which does not fork over M .

(4) (Uniqueness) If M ≤K N both in K[λ,µ), p, q ∈ Sbs(N) both do not fork
over M , and p ↾M= q ↾M , then p = q.

(5) (Strong Continuity3) If δ < µ a limit ordinal, ⟨Mi | i ≤ δ⟩ increasing and
continuous, ⟨pi ∈ Sbs(Mi) | i < δ⟩, and i < j < δ implies pj ↾ Mi = pi,
and pδ ∈ S(Mδ) is an upper bound for ⟨pi | i < δ⟩, then p ∈ Sbs(Mδ).
Moreover, if each pi does not fork over M0 then neither does pδ.

Definition 3.3. A pre-[λ, µ)-frame s = (K,⌣,Sbs) is a w*-good frame if s satisfies:

(1) K[λ,µ) has AP, JEP and NMM.

3This was called just continuity in [MA20]. The author would like to thank Marcos Mazari-
Armida for pointing out that the continuity axiom of a good frame requires only the moreover
part.
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(2) (Uniqueness). See Definition 3.2.
(3) (Basic NIP) For all M ∈ K[λ,µ) |Sbs(M)| ≤ ded ∥M∥.
(4) (Few Non-Basic Types) For all M ∈ K[λ,µ), |gS(M)− Sbs(M)| ≤ λ.
(5) (Continuity4) If δ < µ a limit ordinal, ⟨Mi | i ≤ δ⟩ increasing and con-

tinuous, ⟨pi ∈ Sbs(Mi) | i < δ⟩, and i < j < δ implies pj ↾Mi
= pi, and

pδ ∈ gS(Mδ) is an upper bound for ⟨pi | i < δ⟩. If each pi does not fork
over M0 then pδ ∈ Sbs(Mδ) and pδ also does not fork over M0.

(6) (Transitivity) if p ∈ Sbs(M2) does not fork over M1 ≤K M2, and p ↾M1 does
not fork over M0 ≤K M1, then p does not fork over M0.

Although the author cannot find a proof or counterexample, w-good and w*-good
frames are likely to be incomparable.

Remark 3.4. (Continuity) is weaker than (Strong Continuity). Without not
forking over M0 one cannot deduce that pδ ∈ Sbs(Mδ).

Remark 3.5. In a w-good frame (Transitivity) is implied by several other proper-
ties including (Existence of Non-Forking Extension). For a w*-good frame, where
(Existence of Non-Forking Extension) does not hold in general, we need to explic-
itly include (Transitivity) as an axiom.

Definition 3.6. When µ = λ+ in the previous definitions, we say s is a pre-/w-
good/w*-good λ-frame.

From now on we build a w*-good λ-frame on K assuming the following:

Hypothesis 3.7 (2λ
+
> 2λ). We fix K an AEC and a cardinal λ ≥ LS(K) such

that K is categorical in λ. Further more 1 ≤ I(λ+, K) < 2λ
+
, and Kλ has NIP.

As K is categorical in λ, then K has λ-AP by the following fact, which appeared
in [She87, 3.5] first, and a clearer proof can be found in [Gro02, 4.3]. λ-JEP follows
from categoricity, and λ-NMM follows from categoricity and Kλ+ ̸= ∅.

Fact 3.8. [She87, 3.5] (2λ < 2λ
+
) If I(λ,K) = 1 ≤ I(λ+, K) < 2λ

+
, then K has

the λ-AP.

Definition 3.9. p = gtp(a/M,N) has the extension property if for every K-
embedding f : M → M1 ∈ Kλ there is q ∈ gS(M1) extending f(p).

Definition 3.10. p = gtp(a/M,N) is λ-unique5. if

(1) p = gtp(a/M,N) has the extension property, and

4This is the continuity axiom for good frames.
5This notion was first introduced by Shelah in [She75, 6.1], called minimal types there. Note

that this is a different notion from the minimal types of [She01]. These types are also called
quasiminimal types in the literature, see for example [Zil05] and [Les05]
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(2) for every M ≤K M ′ ∈ Kλ, p has at most one extension q ∈ gS(M ′) with
the extension property.

Fact 3.11. [She09d, VI.2.5(2B)] If Kλ has AP and λ ≥ LS(K), gtp(a,M,N)
has ≥ λ+ realizations in some extension of M (necessarily in K≥λ+) if and only if
gtp(a/M,N) has the extension property.

Now we define the w*-good λ-frame.

Definition 3.12. The preframe sλ−unq is defined such that:

(1) Sbs(M) := {p = gtp(a/M,N) | p has the extension property}.
(2) p = gtp(a/M,N) ∈ Sbs(M) does not fork over M0 ≤K M if p ↾M0 is

λ-unique.

Lemma 3.13. Sλ−al(M) := {p ∈ gS(M) | p has ≤ λ-many realizations} satisfies
|Sλ−al(M)| ≤ λ. By realizations we mean realizations in any ≤K-extension of M
in Kλ+ . So sλ−unq satisfies (Few Non-Basic Types).

Proof. Suppose not, i.e. |Sλ−al(M)| ≥ λ+.
Claim: There is no Γ ⊆ Sλ−al(M), |Γ| ≤ λ that is inevitable.

Otherwise, suppose there exists such Γ. By Fact 2.30, taking S∗ to be gS, and ΓM

to be Γ, we have |gS(M)| ≤ λ, so in particular |Sλ−al(M)| ≤ λ, contradiction.

Now by the claim and Fact 2.29, taking S∗ there to be Sλ−al and µ there to be λ+,
we have I(λ+, K) = 2λ

+
, contradiction. □

Thus from now on in this section we also assume |Sλ−al(M)| ≤ λ.

Lemma 3.14. sλ−unq satisfies the following properties in Definitions 3.1, 3.2 and
3.3:

(1) (Invariance).
(2) (Monotonicity).
(3) (Non-Forking Types are Basic).
(4) AP, JEP and NMM.
(5) (Basic NIP).
(6) (Uniqueness).
(7) (Transitivity).

Proof. Easy. We prove (Transitivity) as an example. Suppose p ∈ Sbs(N) does not
fork over M1 ≤K N , and p ↾M1 does not fork over M0 ≤K M1. Then (p ↾M1) ↾M0

is λ-unique, i.e. p ↾M0 is. Thus p does not fork over M0. □

The following property is essential for the next lemma.
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Definition 3.15. A type family S∗ is λ-compact if for every limit ordinal δ < λ+,
for every ⟨Mi ∈ Kλ : i < δ⟩ an increasing continuous chain and for every coherent
sequence of types ⟨pi ∈ S∗(Mi) : i < δ⟩, there is an upper bound p ∈ S∗(

⋃
i<δ Mi)

to the sequence such that ⟨pi ∈ S∗(Mi) : i < δ + 1⟩ is a coherent sequence.

For certain results in this paper we need to assume that the basic types (i.e.
those with the extension property) is λ-compact, which, for example, holds for
AECs with the disjoint amalgamation property, where every type has the extension
property. Many classes of modules have the disjoint amalgamation property. See
[MAR23, 2.10] and [BET07, 2.2].

Lemma 3.16 (ded λ = λ+ < 2λ). Suppose that Sbs is λ-compact. If p ∈ Sbs(M),
then there is N ≥K M and q ∈ Sbs(N) extending p that does not fork over N . In
particular, for any N ′ ≥K N there is unique q′ ∈ gS(N ′) extending q that does
not fork over N .

Proof. It suffices to show that there is a λ-unique type above any basic type. By
Fact 2.19 let C ∈ Kλ+ be saturated in λ+ over λ. It is also homogeneous in λ+

over λ by Fact 2.13. Let (a,M,N) ∈ K3
λ such that gtp(a/M,N) has the extension

property and there is no λ-unique type above gtp(a/M,N). Build (aη,Mη, Nη) ∈
K3

λ for η ∈<λ 2 and hη,ν for η < ν ∈<λ 2 such that:

(1) (a⟨⟩,M⟨⟩, N⟨⟩) = (a,M,N).
(2) (aη,Mη, Nη) ≤hη,ν (aν ,Mν , Nν) for η < ν.
(3) hη,ρ = hν,ρ ◦ hη,ν for η < ν < ρ.
(4) Mη⌢0 = Mη⌢1, Nη⌢0 = Nη⌢1, and hη,η⌢0 ↾ Mη = hη,η⌢1 ↾ Mη.
(5) gtp(aη⌢0,Mη⌢0, Nη⌢0) ̸= gtp(aη⌢1,Mη⌢1, Nη⌢1), both having λ+-many re-

alizations.
(6) If η ∈δ 2 for δ a limit ordinal, take Mη and Nη to be directed colimits.

Construction: Base case and limit case are clear. At successor stage use non-λ-
uniqueness to get two distinct extensions, each having λ+-many realizations.
Enough: Let M ≤K C ∈ Kλ+ be saturated over λ. Build gη : Mη → C for η ∈ λ2
such that:

(1) gν ◦ hη,ν = gη for ν < η.
(2) gη⌢0 = gη⌢1

This is possible: We carry out the construction by induction on the ℓ(η), the
length of η. For the base case take g⟨⟩ to be inclusion M ≤K C. At limit use the
universal property of Mη as a directed colimit. For the successor case, for η of
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length α = β + 1, suppose we have gη.

(1)

C M ′′
η⌢0 M ′

η⌢0 Mη⌢0

gη[Mη] Mη hη,η⌢0[Mη]

j

∼=g

∼=h

id id id

∼=gη

∼=hη,η⌢0

id

Use basic extension to obtain the right square and g, and then obtain the middle
square and h. Finally the left triangle is by saturation of C. Now define gη⌢0 = gη⌢1

to be the composition of the top row from right to left.

This is enough: For each branch η ∈ λ2, take directed colimit to obtain
(aη,Mη, Nη). Obtain fη : Mη → C by the universal property of colimits such
that fη ◦ hν,η = gν for all ν < η, and obtain f ′

η : Nη → C extending fη by sat-

uration over λ. Since each f ′
η(aη) ∈ |C|, but ∥C∥ = ded λ < 2λ, there must be

η, ν ∈λ 2 such that f ′
η(aη) = f ′

ν(aν). Let α < λ be the least such that η(α) ̸= ν(α).
Without loss of generality say η(α) = 0 and ν(α) = 1. Then the following diagram
commutes:

(2)

Nη↾α⌢0 C

Mη↾α⌢0 Nη↾α⌢1

f ′
η◦hη↾α

⌢0,η

id

id

f ′
ν◦hη↾α

⌢1,ν

with f ′
η ◦hη↾α⌢0,η(aη↾α⌢0) = f ′

ν ◦hη↾α⌢1,ν(aη↾α⌢1) since f
′
η(aη) = f ′

ν(aν), contradicting
requirement (5) of the construction. □

Remark 3.17. The proof of Lemma 3.16 is along the argument of Mazari-Armida
in [MA20, 4.13] and [She09d, VI.2.25], and the difference is that there the saturated
model over λ lies in Kλ++ . For completeness we included all the details.

Question 3.18. Lemma 3.16 is a weaker form of (Existence of Non-Forking Ex-
tension). Is it possible to obtain (Existence of Non-Forking Extension) in its full
strength, by perhaps considering another family of basic types and non-forking re-
lation? One could imitate the w-good λ-frame in [MA20] and use λ-unique types
as basic ones, and then Lemma 3.16 gives a proof of (Weak Density). However,
then it is hard to show that having such a frame implies NIP.

The following definition is [She99, 1.8], which is defined for types of any finite
length. Here we only need it for length 1. Thus we use the version from [Bal09,
11.4(1)].

Definition 3.19. (1) K is (κ, λ)-local if for every increasing continuous chain
M =

⋃
i<κ Mi with ∥M∥ = λ and for any p, q ∈ gS(M): if p ↾Mi

= q ↾Mi
for

all i then p = q.
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(2) K is (< κ, λ)-local if K is (µ, λ)-local for all µ < κ.

Lemma 3.20. If K is (< λ+, λ)-local, then sλ−unq has (Continuity).

Proof. Let Mi, i < δ be increasing continuous. pi ∈ Sbs(Mi) increasing and for
i < j < δ we have pj ↾Mi

= pi, and pδ upper bound. Suppose pδ has ≤ λ-many
realizations. Then there is a set S of cardinality λ+ of realizations of p0, such
that for each a ∈ S, by locality there is i < δ such that a realizes pi but not
pi+1. By pigeonhole principle for some i < δ there are λ+-many realizations of
pi that are not realizations of pi+1. Since there are ≤ λ-many types in S(Mi+1)
that have ≤ λ-many realizations, there must be another type in S(Mi+1) with λ+

realizations distinct from pi+1, which contradicts λ-uniqueness of pi+1.

For the moreover part, if p0 does not fork over M0, so p0 = pδ ↾M0 is λ-unique, i.e.
pδ does not fork over M0. □

Theorem 3.21 (2λ
+
> 2λ). Let K be an AEC categorical in λ ≥ LS(K) , and

1 ≤ I(λ+, K) < 2λ
+
. Kλ has NIP if and only if there is a w*-good λ-frame on K

except possibly without (Continuity). Moreover,

(1) (ded λ = λ+ < 2λ) If sλ−unq is λ-compact, then the w*-good frame satisfies
in addition that if p ∈ Sbs(M), then there is N ≥K M and q ∈ Sbs(N)
extending p that does not fork over N . In particular, for any N ′ ≥K N
there is q′ ∈ gS(N ′) extending q that does not fork over N .

(2) if K is (< λ+, λ)-local, then sλ−unq has (Continuity).

Proof. The moreover part follows from Lemma 3.16. □

4. Syntactic independence property

In this section we assume tameness, and use Galois Morleyization to show that the
negation of NIP leads to being able to encode subsets, as a parallel of first order
independence property.

Hypothesis 4.1. Let κ be an infinite cardinal and K an AEC. Let τ = L(K) be
its underlying language.

We first extend the definition of Galois types to longer lengths and set-valued
domains.

Definition 4.2. (1) K3 := {(ā, A,N) | N ∈ K,A ⊆ |N |, ā is a sequence from |N}.
(2) For (ā0, A,N0), (ā1, A,N1) ∈ K3, (ā0, A,N0)Eat(ā1, A,N1) if there are N ∈

K, f0 : N0 →A N , and f1 : N1 →A N K-embeddings such that f0(ā0) =
f1(ā1), f0 ↾A= f1 ↾A.

(3) E is the transitive closure of Eat.
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(4) For (ā, A,N) ∈ K3, the Galois type of ā over A in N is gtp(a/A,N) :=
[(a,A,N)]E.

(5) ForN ∈ K andA ⊆ |N |, α an ordinal or∞, gS<α(A;N) := {gtp(ā/A,N) |
(ā, A,N) ∈ K3 and ā ∈<α |N |}. gSα(A;N) is defined similarly.

Remark 4.3. In the case where A = |M | for M ∈ K,
⋃

N≥KM gS1(|M |, N) is
what we defined as gS(M) in Definition 2.5.

The following technique first appeared in [Vas16c], which allows one to work with
Galois types in a syntactic way.

Definition 4.4. Let κ be an infinite cardinal and K an AEC. The (< κ)-Galois

Morleyization of K is K̂, an AEC (except that the language might not be finitary)
in a (< κ)-ary language τ̂ extending τ such that:

(1) The structures and the substructure relation ≤K̂ in K̂ are the same as K.
(2) For each p ∈ gS<κ(∅), there is a predicate of the same length Rp ∈ τ̂ . For

eachM ∈ K and ā ∈ |M |, defineM |= Rp[ā] if and only if gtp(ā/∅,M) = p.
By extension, one can interpret quantifier-free Lκ,κ(τ̂) formulas.

(3) The (< κ)-syntactic type of ā ∈<κ |M | overA ⊆ |M | is tpqf-Lκ,κ(τ̂)
(ā/A,M),

the set of all quantifier-free Lκ,κ(τ̂) formulas with parameters from A that
ā satisfies. For a particular quantifier-free Lκ,κ(τ̂)-formula ϕ(x̄, ȳ),
tpϕ(b̄/A,M) := {ϕ(x̄, ā) | ā ∈ A,M |= ϕ(b̄, ā)}.

(4) For M ∈ K and A ⊆ |M |, S<α

qf−Lκ,κ(τ̂)
(A;M) := {tpqf-Lκ,κ(τ̂)

(b̄/A,M) |
b̄ ∈<α |M |}

Remark 4.5. There are ≤ 2<(LS(K)++κ) formulas in τ̂ .

Definition 4.6. For a theory T in first order logic, and Γ a set of T -types, τ a
language contained in the language of T , let EC(T,Γ) denote the class of models
of T omitting all types in Γ. Let PC(T,Γ, τ) denote the class of models of T
omitting all types in Γ as τ -structures.

Fact 4.7. [Vas16c, 3.18(2)] Under the notation of the previous definition, K is
(< κ)-tame if and only if for each ordinal α, M ∈ K, A ⊆ M , gtp(b̄/A,M) 7→
tpqf-Lκ,κ(τ̂)

(b̄/A,M) from gSα(A;M) to Sα

qf−Lκ,κ(τ̂)
(A;M) is bijective.

Notation 4.8. For any formula φ and a condition i, φi means φ itself when i holds,
and ¬φ otherwise. For example, at the end of the proof of the next theorem, the
formula is ϕ(ci, x) and the condition is i ∈ w. When i ∈ w holds, ϕ(ci, x)

i∈w is
ϕ(ci, x). When i /∈ w, ϕ(ci, x)

i∈w is ¬ϕ(ci, x).
Definition 4.9. For T a first order theory, Γ a set of T -types, let EC(T,Γ) denote
the class of T -models that omit all types in Γ. If moreover τ is a language such
that all of its symbols appear in the language of T , let PC(T,Γ, τ) denote the
class of T models omitting each type in Γ interpreted as τ -structures.
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Theorem 4.10. Suppose K is (< ℵ0)-tame, M ∈ K, C ⊆ |M |, λ := |C| ≥
ℶ3(LS(K)) and (ded λ)2

LS(K)
= ded λ. Suppose |gS1(C;M)| > ded λ. Then there

is N ∈ K, ⟨ān ∈m |N | | n < ω⟩ and ϕ in the language of Galois Morleyization such
that for every w ⊆ ω there is bw ∈ |N | such that for all i < ω,

N |= ϕ(āi, bw) ⇐⇒ i ∈ w

Proof. Let K̂ be the (< ℵ0) Galois Morleyization ofK. Note that both classes have

the same Galois types. By Shelah’s Presentation Theorem K̂ = PC(T,Γ, τ̂) with
|T | ≤ 2LS(K), with the language of T containing τ̂ . Then by tameness and the pre-
vious fact |S1

qf−Lω,ω(τ̂)
(C;M)| > ded λ, so for some quantifier-free formula ϕ(ȳ, x)

in Lω,ω(τ̂) with |Sϕ(C;M)| > ded λ, since there are ≤ 2LS(K)-many quantifier-free
Lω,ω(τ̂)-formulas.

Without loss of generality C = λ = |C|. Let µ := (ded λ)+. For notational
simplicity we view Sϕ(C;M) as S, a family of subsets of ℓ(ȳ)C, where

A ∈ S ⇐⇒ {ϕ(ā, x) | ā ∈ A} ∈ Sϕ(C).

We also assume ȳ has length 1. The proof for other cases is similar.

Claim: For all α < λ, if |{A ∩ α | A ∈ S}| ≥ µ, then α ≥ (ℶ2(LS(K)))+.
Proof of Claim: Suppose there is α < λ, |{A∩α | A ∈ S}| ≥ µ. Since {A∩α | A ∈
S} is the set of branches of the a subtree of <α2, ded λ < µ ≤ ded |<α2| ≤ ded 2|α|,
so 2|α| > λ ≥ ℶ3(LS(K)), so |α| > ℶ2(LS(K)). Thus the claim holds.

We may assume λ > ℶ2(LS(K)) and for all α < λ, |{A ∩ α | A ∈ S}| < µ. If
this holds, then we are done since λ ≥ ℶ3(LS(K)) > ℶ2(LS(K)). If not, replace
λ with smallest α < λ such that |{A ∩ α | A ∈ S}| ≥ µ. By minimality for
all β < α, |{A ∩ β | A ∈ S}| < µ. Such α might be small, but by the claim
α ≥ (ℶ2(LS(K)))+, and this is enough for the rest of the argument.

For each α ≤ λ let S0
α := {⟨A ∩ α, α⟩ | A ∈ S}.

⋃
α S

0
α<λ is a tree when equipped

with
(A1, α1) ≤ (A2, α2) ⇐⇒ α1 ≤ α2 ∧ A1 = A2 ∩ α1.

Let
S1
α := {s ∈ S0

α | |{t ∈ S0
α | s ≤ t}| ≥ µ},

and
S1
λ := {s ∈ S0

λ | ∀α < λ(s ↾α∈ S1
α)}.

We build

(1) for n < ω, Sn ⊆ S1
λ, and

(2) for each i ∈ Sn and (A, i) ∈ S1
i , and

(a) λ > αA
i (n, 0) > . . . > αA

i (n, n− 1) > i, a sequence of ordinals,

(b) (D
(A,i)
u,n , λ) ∈ S1

λ for each u ⊆ n, and
(3) pn ∈ Sn+2n

T (∅) for n < ω
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such that:

(1) S0 = S1
λ;

(2) |Sn| ≥ (ℶ2(LS(K)))+ for all n;
(3) Sn+1 ⊆ Sn for all n;
(4) The variables of pn are xi for i < n ordered naturally and yS for S ⊆ n

ordered by ⊆;
(5) pn ⊆ pn+1 for all n. This means the pn+1 restricted to xi for i < n and yS

for S ⊆ n is equal to pn;
(6) For all n < m, (A, i) ∈ Sn and (B, j) ∈ Sm, (A, i) ≤ (B, j) ∈

⋃
α S

0
α

pn = tpT (⟨αA
i (n, 0), . . . α

A
i (n, n− 1)⟩⌢⟨D(A,i)

w,n | w ⊆ n⟩/∅,M)

= tpT (⟨αB
j (m, 0), . . . αB

j (m,n− 1)⟩⌢⟨D(B,j)
w,m | w ⊆ m⟩/∅,M);

(7) For all (A, i) ∈ Sn and w ⊆ n, (A, i) ≤ (D
(A,i)
w,n , λ) and αA

i (n, i) ∈ D
(A,i)
w,n ⇐⇒

i ∈ w.

Construction: We build these objects by induction on n. When n = 0 let D
(∅,0)
∅,0

be any element in S1
λ. Assume we have built Sn, α

A
i (n, j) for (A, i) ∈ Sn and pn.

Fix s = (A, i) ∈ Sn. Clearly Ts := {t ∈
⋃

β<λ S
1
β | s ≤ t} is a tree. For every

s ≤ t ∈ S1
λ, Bt := {t∗ | s ≤ t∗ ≤ t} is a branch of Ts, and t1 ̸= t2 =⇒ Bt1 ̸= Bt2 .

Since
|S0

λ − S1
λ| = |

⋃
α<λ,s∈S0

α−S1
α

{t ∈ S0
λ | s ≤ t}| < µ,

Ts has ≥ µ-many branches, and hence |Ts| > λ. Then for some i′, |Ts∩S1
i′ | > λ. Let

sj = (Aj, i
′) ∈ Ts∩S1

i′ for j < λ+. Since there are ≤ λ finite tuples of ordinals < λ,

we may assume α
Aj

i′ are the same for all j. Now let αA
i (n+1, k) := α

Aj

i′ (n, k) for all
k < n. Let αA

i (n+1, n) be the least α such that s0(α) ̸= s1(α), i.e. α ∈ A0−A1 or
α ∈ A1 − A0. Without loss of generality assume the latter case. For w ⊆ (n+ 1),

let D
(A,i)
w,n+1 := D

(A0,i′)
w,n if n /∈ w and D

(A,i)
w,n+1 := D

(A1,i′)
w,n if n ∈ w.

Note that i < αA
i (n + 1, n) < i′ < αA

i (n + 1, n − 1) < . . . < αi(n + 1, 0). Since
|Sn| =≥ (ℶ2(LS(K)))+, and there are ≤ ℶ2(LS(K)) T -types, by the pigeonhole
principle there is Sn+1 ⊆ Sn, |Sn+1| ≥ (ℶ2(LS(K)))+ such that for all (A, i),
(B, j) ∈ Sn+1,

tpT (⟨αA
i (n, 0), . . . α

A
i (n+ 1, n)⟩⌢⟨D(A,i)

w,n+1 | w ⊆ n+ 1⟩/∅,M)

is the same, and define this type to be pn+1. This finishes the construction. Note

that here since D
(A,i)
w,n+1 is an element of S1

λ ⊆ S0
λ = S, i.e. a ϕ-type, the “T -type” of

D
(A,i)
w,n+1 is just the T -type of a realization of it, which can be fixed at the beginning

of the proof.

T ∗ := T ∪ {ϕ(ci, dw)i∈w) | w ⊆ ω} ∪ {pn(⟨ci | i < n⟩⌢⟨dw | w ⊆ ω⟩) | n < ω}
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is consistent, and by Morley’s method we are done. □

Theorem 4.11. If K can encode subsets of µ := ℶ(2LS(K))+ , then it can encode
subsets of any cardinal. That is, if there are M ∈ K, {ai | i < µ} ⊆ |M |,
{bw | w ⊆ µ} ⊆ |M | such that for all w ⊆ µ,

i ∈ w ⇐⇒ ϕ(ai, bw),

then we can replace µ above by any cardinal.

Proof. We fix K̂ and ϕ as in the proof of the previous theorem. Let λ = (2LS(K))+.
Suppose K can encode subsets of µ := ℶ(2LS(K))+ . That is, there are M ∈ K,
{ai | i < µ} ⊆ |M |, {bw | w ⊆ µ} ⊆ |M | such that for all w ⊆ µ,

i ∈ w ⇐⇒ ϕ(ai, bw).

For each i0 < . . . < in−1 < µ and u ⊆ n, choose some subset w ⊆ µ such
that ij ∈ w ⇐⇒ ϕ(aij , bw) ⇐⇒ j ∈ u, and let bi0,...,in−1

u,n := bw. We build

⟨Fn ⊆ µ | n < ω⟩, ⟨Xξ,n ⊆ µ | ξ ∈ Fn, n < ω⟩ and pn ∈ Sn+2n

T (∅) such that:

(1) For all n < ω, |Fn| = λ;
(2) |Xξ,n| > ℶβ(2

LS(K)) when ξ is the β-th element of Fn;
(3) pn(⟨aij | j < n⟩⌢⟨bi0,...,in−1

u,n | u ⊆ n⟩).

Let F0 = λ and Xξ,0 := µ for all ξ. Suppose we have constructed everything for
stage n. Fix g : λ → Fn an increasing enumeration. Let Gn := {g(β + n + 1) |
β < λ}. For each ξ = g(β + n + 1) ∈ Gn, consider the map ⟨ij | j < n⟩ 7→
tpT (⟨aij | j < n + 1⟩⌢⟨bi0,...,inu,n+1 | u ⊆ n + 1⟩/∅,M) from [Xξ,n]

n+1 (increasing

(n + 1)-tuples from Xξ,n) to Sn+2n

T (∅). Since |Xξ,n| > ℶβ+n+1((2
LS(K))+), by the

Erdős-Rado theorem, there is a monochromatic subset Xξ,n+1 ⊆ Xξ,n such that
|Xξ,n+1| > ℶβ((2

LS(K))+). I.e. there is a type pξ,n+1 such that for all i0 < . . . < in,

tpT (⟨aij | j < n⟩⌢⟨bi0,...,inu,n+1 | u ⊆ n + 1⟩/∅,M) = pξ,n+1. By the pigeonhole
principle there is Fn+1 ⊆ Gn of cardinality λ and pn+1 such that for all ξ ∈ Fn+1,
pξ,n+1 = pn+1.

Then

T ∗ := T∪{ϕ(ci, dw)i∈w) | w ⊆ κ}∪{pn(⟨cij | j < n⟩⌢⟨dw | w ⊆ w⟩) | n < ω, i0 < . . . < in−1 < κ}
is consistent for any cardinal κ. By Morley’s method we are done. □

Lemma 4.12 (Morley’s method). Let T be a first order theory with built-in
Skolem functions and Γ a set of T -types. Let ⟨ci | i < α⟩ be new constants. Let
pS be a T -type in |S| variables for every finite subset S of α, and T ∗ a theory not
containing any of the new constants such that:

(1) T ∗ ⊇ T ∪ {pS(⟨cγ | γ ∈ S⟩) | S ⊆ α finite} is consistent;
(2) Each pS is realized in some M ∈ EC(T,Γ).
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Then there is N ∈ EC(T ∗,Γ).

Proof. Let M be a model of T ∗ and without loss of generality M = EM({ci | i <
α}). We show that M omits all types from Γ. Suppose not, i.e. a ∈ |M | realizes
some q ∈ Γ. Write a as τM(ci0 , . . . , cik) for some term τ in the language of T . Let
S := {cMi0 , . . . , c

M
ik
} and ⟨b0, . . . , bk⟩ ⊆ N∗ ∈ EC(T,Γ) realizing pS. Then for some

φ(y) ∈ q, N∗ |= ¬φ(τ(b0, . . . , bk)). As pS is complete, ¬φ(τ(x0, . . . , xk)) ∈ pS.
Thus M |≠ φ(τ(ci0 , . . . , cik)), i.e. M |= ¬φ(a), so a does not realize q. □
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